Как извлечь корень из комплексного числа

⇡#Введение

О контроллере SF-1200/1500, дебютном изделии компании SandForce, мы уже неоднократно писали. Этот чип обеспечивает быстродействие на пределе возможностей SATA 2, хорошо сбалансирован по скорости чтения и записи и лишь в тестах на произвольный доступ уступает контроллерам SSD от Intel, которые специально «заточены» под подобного рода нагрузку, — X25-M и SSD 320. Кроме того, диски на SF-1200 почти не теряют производительности даже после двух часов интенсивной забивки данными, в то время как конкуренты стремительно деградируют. Всеми перечисленными достоинствами SandForce обязан компрессии и дедубликации данных, которые выполняются на лету, и в результате на чипы памяти записывается гораздо меньше информации по сравнению с тем объемом, который отправила операционная система. Но вот если данные сжимаются плохо (например, аудио- и видеозаписи в формате со сжатием), то накопителю приходится туго: скорость записи становится куда более скромной и без компрессии ничто не может компенсировать падение производительности по мере истощения запаса свободных ячеек в массиве памяти. К счастью, большая часть файлов, которые хранятся на домашних компьютерах, прекрасно сжимаются, и в реальных задачах накопители на SF-1200/1500 выступают так же хорошо, как и в синтетических бенчмарках.

У подхода, который использует SandForce, есть и другие плюсы: накопители обходятся без отдельного буфера DRAM, и можно использовать более дешевую и менее надежную Flash-память. Наконец, одновременно с компрессией данных их достаточно легко шифровать. SF-1200/1500 по умолчанию шифрует содержимое накопителя, и, чтобы защитить файлы от посторонних глаз, достаточно задать пароль на включение компьютера в BIOS.

В SandForce второго поколения есть ряд важных нововведений. Во-первых, он поддерживает микросхемы NAND с интерфейсом ONFi 2.0, который поднимает планку быстродействия с 50 до 133 Мбайт/с и выше (речь идет об отдельном чипе, разумеется). Во-вторых, появилась поддержка SATA 3. В результате пиковые скорости, заявленные в спецификациях SF-2000, достигают 500 Мбайт/с при последовательном доступе и 60 тыс. оп./с при произвольном чтении и записи. Таким образом, новый контроллер примерно в два раза быстрее, чем SF-1200, при том что число каналов осталось прежним — восемь. SF-2000 может работать как с памятью, произведенной по техпроцессу 34 нм, так и с 25-нанометровой NAND Flash.

Остальные новшества увеличивают надежность хранения данных. SF-2000 использует 256-битный ключ AES-шифрования против 128-битного у SF-1200 и улучшенный механизм коррекции ошибок. Кроме того, SandForce по-прежнему выделяет часть объема, эквивалентную одному чипу NAND, для хранения блоков четности — примерно как RAID пятого уровня. Изрядный объем также достается фонду подменных пустых ячеек для выравнивания износа массива и компенсации падения скорости по мере того, как привод заполняется данными.

Модельный ряд чипов SF двухтысячной серии делится на две группы: SF-2100/2200 и 2500/2600. Физически они ничем не отличаются друг от друга, но прошивка дает старшим модификациям поддержку «суперконденсатора», который устанавливают в серверные приводы на случай аварийного отключения. Чипы SF-2100/2200 предназначены для потребительских продуктов, и SF-2100 урезан сильнее всех — в нем отключена поддержка SATA 3 и микросхем NAND с двумя кристаллами в упаковке. Последняя особенность весьма существенна, так как канал с двумя кристаллами «на конце» работает быстрее за счет их чередования.

Обновление 05.03.2020

Прошла еще одна неделя, а вместе с ней к «пробегу» добавились еще 150 ТБ, доведя общее значение до 655 ТБ.

Как обычно, прибегнем к услугам утилиты «phison_e7_flash_id»:

Среднее количество циклов запись/стирание составляет 3 330, и можно сказать, что ресурс ячейки отработали честно. С накопителем ничего не происходит, внешне никаких изменений не наблюдается.

Простой поиск

Чтобы произвести поиск значения в таблице Excel, необходимо на вкладке «Главная» открыть выпадающий список инструмента «Найти и заменить» и щёлкнуть пункт «Найти». Тот же эффект можно получить, используя сочетание клавиш Ctrl + F.

В простейшем случае в появившемся окне «Найти и заменить» надо ввести искомое значение и щёлкнуть «Найти всё».

Как видно, в нижней части диалогового окна появились результаты поиска. Найденные значения подчёркнуты красным в таблице. Если вместо «Найти все» щёлкнуть «Найти далее», то сначала будет произведён поиск первой ячейки с этим значением, а при повторном щелчке – второй.

Аналогично производится поиск текста. В этом случае в строке поиска набирается искомый текст.

Если данные или текст ищется не во всей экселевской таблице, то область поиска предварительно должна быть выделена.

Восстановление удаленных фотографий из резервной копии iTunes

Как найти квадратный корень из числа

Квадратные корни из целых чисел, чьи квадраты известны, вычислить довольно просто.
Для этого достаточно выучить таблицу квадратов.

Чаще всего в задачах школьного курса математики требуется найти квадратный корень из квадратов чисел от
до .

№ 307 Алимов 9 класс

Вычислить арифметический квадратный корень из числа.

Как найти квадратный корень из десятичной дроби

Важно!

При нахождении квадратного корня из десятичной дроби нужно выполнить следующие действия:

  1. забыть про запятую в исходной десятичной дроби и представить её в виде целого числа;
  2. вычислить для целого числа квадратный корень;
  3. полученное целое число заменить на десятичную дробь (поставить запятую исходя из
    правила умножения десятичных дробей).

Более подробно разберем на примере ниже.

№ 307 Алимов 9 класс

Вычислить квадратный корень из десятичной дроби «».

По первому пункту правила забудем про запятую в десятичной дроби и представим ее в виде целого числа «».

Нетрудно вспомнить, какое число в квадрате дает «». Это число
«».

Вспомним правило умножения десятичных дробей.
Количество знаков после запятой в результате умножения десятичных дробей равняется сумме количества знаков после запятой каждой
дроби.

Т.е., например, при умножении «» на
«» в полученном произведении будет десятичная дробь с тремя знаками после запятой.

Значит, при вычислении квадратного корня

нам нужно найти десятичную дробь, у которой был бы только один знак после запятой.

Мы исходим из того, что в результате умножения десятичной дроби на саму себя в результате должно было получиться
два знака после запятой, как у десятичной дроби «».

Получается, что ответ — десятичная дробь «».

Убедимся, что квадрат десятичной дроби
«» дает
«».

Умножим в столбик «» на

«».

Рассмотрим другой пример вычисления квадратного корня из десятичной дроби. Вычислить:

Представим вместо десятичной дроби «» целое число
«». Какое число в квадрате даст «»?
Ответ — число «».

Т.к. в десятичной дроби «» — два знака после запятой, значит в десятичной дроби,
которая дала в квадрате «» должен быть один знак после запятой.

Убедимся, что «» дает в квадрате «».

Квадратные корни из чисел

и т.п.

Не из всех чисел удается легко извлечь квадратный корень. Например, совершенно неочевидно, чему равен

или

и т.п.

В самом деле, какое число в квадрате даст «»? Или число «»?
Такое число не будет целым. Более того, оно представляет из себя
непериодическую десятичную дробь
и входит в
множество иррациональных чисел.

Что делать, когда в ответе остаются подобные квадратные корни? Как, например, в примере ниже:

Нет такого целого числа, которое бы дало в квадрате число «».
Поэтому, перед завершением задачи внимательно читайте её условие.

Если в задаче дополнительно ничего не сказано об обязательном вычислении всех квадратных корней, тогда ответ можно
оставить с корнем.

Если в задании сказано, что необходимо вычислить все квадратные корни с помощью микрокалькулятора,
то после вычисления квадратного корня на калькуляторе
округлите результат до необходимого количества знаков.

Текст задания в таком случае может быть написан следующим образом:

«Вычислить. Квадратные корни найти с помощью калькулятора и округлить с точностью до
«».

Тригонометрический калькулятор онлайн — примеры

Как произвести онлайн расчет синусов и косинусов, тангенсов

Обратите внимание, что kalkpro.ru способен оперировать как градусами, так радианами и градами. 1 рад = 57,3°; 360° = 2π рад., 1 град = 0,9 градусов или 1 град = 0,015708 радиан

1 рад = 57,3°; 360° = 2π рад., 1 град = 0,9 градусов или 1 град = 0,015708 радиан.

Для включения того или иного режима измерения нажмите нужную кнопку:

где Deg – градусы, Rad – измерение в радианах, Grad — в градах. По умолчанию включен режим расчета в градусах.

В качестве самого простого примера найдем синус 90 градусов. Нажмите:

90

Ответ: единица

Также рассчитываются и другие тригонометрические функции, например, вычислим косинус 60 °:

60

Решение: 0,5

Аналогичным способом вычисляются обратные тригонометрические функции онлайн на КАЛКПРО — арксинус , арккосинус, арктангенс, а также гиперболические функции sinh, cosh, tanh.

Для их ввода необходимо переключить интерфейс, нажав , появятся новые кнопки – asin, acos, atan. Порядок ввода данных прежний: сначала величину, затем символ нужной функции, будь то акрсинус или арккосинус.

Преобразование с кнопкой Dms и Deg на калькуляторе

позволяет перевести угол из формата градусы, минуты и секунды в десятичные доли градуса для вычислений. производит обратный перевод – в формат «градусы; минуты; секунды».

Например, угол 35 o 14 минут 04 секунды 53 десятые доли секунды переведем в десятые доли:

35,140453 35,23459166666666666666

Переведем в прежний формат: 35,23459166666666666666 35,140453

Десятичный логарифм онлайн

Десятичный логарифм на калькуляторе рассчитывается следующим образом, например, ищем log единицы по основанию 10, log10(1) или lg1:

1

Получается 0 в итоге. Для подсчета lg100 нажмем так:

100

Решение: два. Как себя проверить? Что вообще такое десятичный логарифм — log по основанию 10. В нашем примере 2 – это степень в которую необходимо ввести основание логарифма, то есть 10, чтобы получить 100.

Так же вычисляется натуральный логарифм, но кнопкой .

Как пользоваться памятью на калькуляторе

Существующие кнопки памяти: M+, M-, MR, MS, MC.

Добавить данные в память программы, чтобы потом провести с ними дальнейшие вычисления поможет операция MS.

MR выведет вам на дисплей сохраненную в памяти информацию. MC удалит любые данные из памяти. M- вычтет число на онлайн дисплее из запомненного в памяти.

Пример. Внесем сто сорок пять в память программы:

145

После проведения других вычислений нам внезапно понадобилось вернуть запомненное число на экран электронного калькулятора, нажимаем просто:

На экране отобразится снова 145.

Потом мы снова считаем, считаем, а затем решили сложить, к примеру, 85 с запомненным 145, для этого нажимаем , либо для вычитания 85 из запомненного 145. В первом случае по возвращению итогового числа из памяти кнопкой получится 230, а во втором, после нажатия и получится 60.

Инженерный калькулятор kalkpro.ru быстро и точно проведет сложные вычисления, значительно упрощая ваши задачи.

Перечень калькуляторов и функционал будет расширяться, просто добавьте сайт в закладки и расскажите друзьям!

Как обозначить корень 3,4,5 степени на клавиатуре

При этом также может возникнуть вопрос о том, как написать обозначить квадратный корень на клавиатуре и другие, подобные им.

Например, корень 3,4,5 степени на клавиатуре можно записать так:

3√X (вместо числа 3 можете использовать соответствующее обозначение из таблицы символов (³)

При этом, несмотря на то, что в системе имеется изображение кубического корня ∛ и четвёртого корня ∜ , набрать их через Alt и цифровые клавиши не получится. Это возможно лишь с помощью кодов десятичной системы HTML-код (&#8731 и &#8732) и шестнадцатеричной Юникод (&#x221B и &#x221C). По мне, так лучше использовать формы обозначения, описанные мной чуть выше.

Способ №4

Этот способ не требует применения специальных функций Word – все необходимое для написания квадратного корня есть на самой клавиатуре.

  1. Убедитесь, что вы активировали цифры в правой части клавиатуры. Чтобы включить цифровой блок, нажмите кнопку Num Lock. Обычно она находится в правом верхнем углу цифрового блока клавиатуры.
  2. Если блока цифр у вас нет (например, на ноутбуке), то Num Lock может быть активирован с помощью комбинации клавиш – например, Fn+F8 или Fn+F11 (последняя клавиша в может отличаться в зависимости от производителя или модели вашего ноутбука).
  3. Зажмите клавишу Alt и на активированной цифровой клавиатуре нажмите подряд цифры 2, 5 и 1. То есть, нажмите сочетание Alt+251. Вы увидите, как в указанном месте появился значок корня.

Комплекс операций инженерного калькулятора

Встроенный математический калькулятор поможет вам провести самые простые расчеты: умножение и суммирование, вычитание, а также деление. Калькулятор степеней онлайн быстро и точно возведет любое число в выбранную вами степень.

Представленный инженерный калькулятор содержит в себе все возможные вариации онлайн программ для расчетов. Kalkpro.ru содержит тригонометрический калькулятор (углы и радианы, грады), логарифмов (Log), факториалов (n!), расчета корней, синусов и арктангенсов, косинусов, тангенсов онлайн – множество тригонометрический функций и не только.

Работать с вычислительной программой можно онлайн с любого устройства, в каждом случае размер интерфейса будет подстраиваться под ваше устройство, либо вы можете откорректировать его размер на свой вкус.

Ввод цифр производится в двух вариантах:

  • с мобильных устройств – ввод с дисплеем телефона или планшета, клавишами интерфейса программы
  • с персонального компьютера – с помощью электронного дисплея интерфейса, либо через клавиатуру компьютера любыми цифрами

Квадратный корень

Положительное число

Именно на работу с неотрицательными числами «заточена» функция

Если число больше или равно нулю, то неважно, какой у него тип. Вы можете извлекать корень из целых чисел:

А можете – из вещественных:

Легко проверить корректность полученных результатов с помощью обратной операции возведения в степень:

Отрицательное число

Функция не принимает отрицательных аргументов. Только положительные целые числа, вещественные числа и ноль.

Такая работа функции идёт вразрез с математическим определением. В математике корень спокойно извлекается из чисел меньше 0. Вот только результат получается комплексным, а таким он нужен для относительно узкого круга реальных задач, вроде расчетов в сфере электроэнергетики или физики волновых явлений.

Поэтому, если передадите отрицательное число в , то получите ошибку:

Способ №4

Этот способ не требует применения специальных функций Word – все необходимое для написания квадратного корня есть на самой клавиатуре.

  1. Убедитесь, что вы активировали цифры в правой части клавиатуры. Чтобы включить цифровой блок, нажмите кнопку Num Lock. Обычно она находится в правом верхнем углу цифрового блока клавиатуры.
  2. Если блока цифр у вас нет (например, на ноутбуке), то Num Lock может быть активирован с помощью комбинации клавиш – например, Fn+F8 или Fn+F11 (последняя клавиша в может отличаться в зависимости от производителя или модели вашего ноутбука).
  3. Зажмите клавишу Alt и на активированной цифровой клавиатуре нажмите подряд цифры 2, 5 и 1. То есть, нажмите сочетание Alt+251. Вы увидите, как в указанном месте появился значок корня.

Как написать корень на клавиатуре используя таблицу символов

Альтернативой этому варианту является использование специальной таблицы символов, имеющейся в ОС Виндовс.

  1. Нажмите на «Пуск», затем выберите «Все программы»;
  2. Потом «Стандартные», затем «Служебные», где выберите «Таблица символов».
  3. Там найдите знак корня √, кликните на него, нажмите на кнопку «Выбрать», затем «Копировать» и скопируйте его в нужный вам текст с помощью клавиш Ctrl+V.

В текстовом редакторе Word (а также в Excel) также имеется соответствующая таблица символов, которую можно использовать для наших задач. Вы можете найти её, перейдя во вкладку «Вставка», и нажав на «Символ» справа, а затем и кликнув на надпись «Другие символы» чуть снизу, это поможет вам в решении вопроса написании корня в Ворде.

Можно, также, использовать опцию «Формула» во вкладке «Вставка» по описанному в данном ролике алгоритму.

Поразрядное нахождение значения корня

Бывают случаи, когда под корнем находится число, которое не получается представить в виде n – ной степени некоторого числа. Но необходимо знать значение корня с точностью до некоторого знака.

В таком случае необходимо воспользоваться алгоритмом поразрядного нахождения значения корня, с помощью которого можно получить достаточное количество значений искомого числа.

Как это происходит, разберем на примере извлечения квадратного корня из 5 .

Сперва необходимо найти значение разряда единиц. Для этого начнем перебирать значения 0 , 1 , 2 , . . . , 9 , вычисляя при этом 0 2 , 1 2 , . . . , 9 2 до необходимого значения, которое больше, чем подкоренное число 5 . Все это удобно представить в виде таблицы:

Возможное значение корня123
Это значение в степени149

Значение ряда единиц равняется 2 ( т а к к а к 2 2 5 , а 2 3 > 5 ) . Переходим в разряду десятых — будем возводить в квадрат числа 2 , 0 , 2 , 1 , 2 , 2 , . . . , 2 , 9 , , сравнивая полученные значения с числом 5 .

Возможное значение корня2,02,12,22,3
Это значение в степени44,414,845,29

Поскольку 2 , 2 2 5 , а 2 , 3 2 > 5 , то значение десятых равняется 2 . Переходим к нахождению значения сотых:

Возможное значение корня2.202,212,222,232,24
Это значение в степени4,844,88414,82944,97295,0176

Таким образом, найдено значение корня из пяти — 2 , 23 . Можно находить значения корня дальше:

2 , 236 , 2 , 2360 , 2 , 23606 , 2 , 236067 , . . .

Итак, мы изучили несколько наиболее распространенных способов нахождения значения корня, воспользоваться которыми можно в любой ситуации.

1. Квадратный корень из произведения двух неотрицательных множителей равен произведению корней из этих множителей:1. Квадратний корінь з добутку двох невід’ємних множників дорівнює добутку коренів з цих множників:
2. Квадратный корень из дроби, числитель которой неотрицательный, а знаменатель положительный, равен корню из числителя, разделенному на корень из знаменателя:2. Квадратний корінь з дробу, чисельник якої ненегативний, а знаменник – позитивний, дорівнює кореню з чисельника, розділеному на корінь із знаменника:

Чтобы извлечь квадратный корень из многочлена, надо вычислить многочлен и из полученного числа извлечь корень.

Внимание! Нельзя извлекать корень из каждого слагаемого (уменьшаемого и вычитаемого) отдельно. Щоб витягти квадратний корінь з многочлена, треба обчислити багаточлен і з отриманого числа витягти корінь

Щоб витягти квадратний корінь з многочлена, треба обчислити багаточлен і з отриманого числа витягти корінь.

Увага! Не можна витягати корінь з кожного додатку (зменшуваного і від’ємного) окремо.

Чтобы извлечь квадратный корень из произведения (частного), можно вычислить корень квадратный из каждого множителя (делимого и делителя), а полученные значения взять произведением (частным).

Щоб витягти квадратний корінь з добутку (частки), можна обчислити корінь квадратний з кожного множника (діленого і дільника), а отримані значення взяти добутком (часткою).

Чтобы извлечь квадратный корень из дроби, надо извлечь квадратный корень из числителя и знаменателя отдельно, а полученные значения оставить дробью или вычислить как частное (если возможно это по условию).

Щоб витягти квадратний корінь з дробу, треба витягти квадратний корінь з чисельника і знаменника окремо, а отримані значення залишити дробом або обчислити як частку (якщо можливо це за умовою).

Из-под знака корня можно вынести множитель и можно внести множитель под знак корня. При вынесении множителя из него извлекается корень, а при внесении – он возводится в соответствующую степень.

З-під знака кореня можна винести множник і можна внести множник під знак кореня. При винесенні множника з нього витягується корінь, а при внесенні – він зводиться у відповідну ступінь.

Если корень в знаменателе дроби, то такую дробь можно заменить тождественной ей дробью, не содержащей радикалов (корней) в знаменателе. Для этого умножают числитель и знаменатель дроби на такое выражение (сопряженное знаменателю), чтобы корень в знаменателе извлекался.Якщо корінь в знаменнику дробу, то такий дріб можна замінити тотожним йому дробом, що не містить радикалів (коренів) у знаменнику. Для цього множать чисельник і знаменник дробу на такий вираз (поєднане зі знаменником), щоб корінь в знаменнику видалявся.

Примеры вычисления корней

Теория — это, конечно, хорошо. Но давайте проверим ее на практике.

Для начала выясним, между какими числами лежит число 576:

Теперь смотрим на последнюю цифру. Она равна 6. Когда это происходит? Только если корень заканчивается на 4 или 6. Получаем два числа:

Осталось возвести каждое число в квадрат и сравнить с исходным:

Отлично! Первый же квадрат оказался равен исходному числу. Значит, это и есть корень.

Здесь и далее я буду писать только основные шаги. Итак, ограничиваем число:

Смотрим на последнюю цифру:

Возводим в квадрат:

Вот и ответ: 37.

Ограничиваем число:

Смотрим на последнюю цифру:

Возводим в квадрат:

Получили ответ: 52. Второе число возводить в квадрат уже не потребуется.

Ограничиваем число:

Смотрим на последнюю цифру:

Как видим, после второго шага остался лишь один вариант: 65. Это и есть искомый корень. Но давайте все-таки возведем его в квадрат и проверим:

Все правильно. Записываем ответ.

Заключение

Многие спрашивают: зачем вообще считать такие корни? Не лучше ли взять калькулятор и не парить себе мозг?

Увы, не лучше. Давайте разберемся в причинах. Их две:

  • На любом нормальном экзамене по математике, будь то ГИА или ЕГЭ, пользоваться калькуляторами запрещено. И за пронесенный в класс калькулятор могут запросто выгнать с экзамена.
  • Не уподобляйтесь тупым американцам. Которые не то что корни — они два простых числа сложить не могут. А при виде дробей у них вообще начинается истерика.

В общем, учитесь считать. И все будет хорошо. Удачи!

  1. Выделение полного квадрата
  2. Преобразование выражений с корнем — часть 1
  3. Сравнение дробей
  4. Сводный тест по задачам B15 (2 вариант)
  5. Что делать, если в показателе стоит логарифм
  6. Задача C1: тригонометрические уравнения и формула двойного угла

Основные арифметические и алгебраические свойства

  • Число 191 на русском языке, number in Russian, число 191 прописью:
    сто девяносто один
  • Четность
    Нечетное число 191
  • Разложение на множители, делители числа 191
    ,
  • Простое или составное число
    Простое число 191
  • Числа делящиеся на целое число 191
    , , , , , , ,
  • Число 191 умноженное на число два
  • 191 деленное на число 2
    95.5
  • Список 8-ми простых чисел перед числом
    , , , , , , ,
  • Сумма десятичных цифр
  • Количество цифр
  • Десятичный логарифм 191
    2.2810333672477
  • Натуральный логарифм 191
    5.2522734280466
  • Это число Фибоначчи?
    Нет
  • Число на 1 больше числа 191,следующее число
    число 192
  • Число на 1 меньше числа 191,предыдущее число

Приведение корней к общему показателю

Приведение корней к общему показателю имеет большое сходство с приведением дробей к общему знаменателю. Рассмотрим два способа:

  1. Показатели корней не имеют общих множителей. В этом случае показатель каждого корня и его подкоренное число (или выражение) умножают на произведение остальных корней.

    Рассмотрим три выражения:

    ,

    Так как у данных показателей нет общего множителя, то просто перемножаем все показатели между собой. Полученный результат и станет общим показателем. После приведения к общему показателю выражения будут иметь следующий вид:

  2. Показатели корней имеют общий множитель. В этом случае надо найти НОК показателей и умножить показатель каждого корня на недостающий множитель.

    Рассмотрим два выражения:

    ,

    НОК (4, 6) = 12,  значит, для первого выражения дополнительным множителем будет  3,  а для второго  2.  После приведения к общему показателю выражения будут иметь следующий вид:

При умножении и делении иррациональных выражений с разными показателями их приводят к общему показателю, а затем уже умножают или делят их подкоренные числа или выражения.

Примеры:

Как написать корень на клавиатуре используя таблицу символов

Альтернативой этому варианту является использование специальной таблицы символов, имеющейся в ОС Виндовс.

  1. Нажмите на «Пуск», затем выберите «Все программы»;
  2. Потом «Стандартные», затем «Служебные», где выберите «Таблица символов».
  3. Там найдите знак корня √, кликните на него, нажмите на кнопку «Выбрать», затем «Копировать» и скопируйте его в нужный вам текст с помощью клавиш Ctrl+V.

В текстовом редакторе Word (а также в Excel) также имеется соответствующая таблица символов, которую можно использовать для наших задач. Вы можете найти её, перейдя во вкладку «Вставка», и нажав на «Символ» справа, а затем и кликнув на надпись «Другие символы» чуть снизу, это поможет вам в решении вопроса написании корня в Ворде.

Можно, также, использовать опцию «Формула» во вкладке «Вставка» по описанному в данном ролике алгоритму.

Почему нужны два определения?

Внимательный читатель уже наверняка заметил, что все квадратные корни, приведённые в примерах, извлекаются из положительных чисел. Ну, в крайнем случае из нуля. А вот кубические корни невозмутимо извлекаются абсолютно из любого числа — хоть положительного, хоть отрицательного.

Почему так происходит? Взгляните на график функции $y={{x}^{2}}$:

График квадратичной функции даёт два корня: положительный и отрицательный

Попробуем с помощью этого графика посчитать $\sqrt{4}$. Для этого на графике проведена горизонтальная линия $y=4$ (отмечена красным цветом), которая пересекается с параболой в двух точках:${{x}_{1}}=2$ и ${{x}_{2}}=-2$. Это вполне логично, поскольку

\

С первым числом всё понятно — оно положительное, поэтому оно и есть корень:

\

Но что тогда делать со второй точкой? Типа у четвёрки сразу два корня? Ведь если возвести в квадрат число −2, мы тоже получим 4. Почему бы тогда не записать$\sqrt{4}=-2$? И почему учителя смотрят на подобные записи так, как будто хотят вас сожрать?:)

В том-то и беда, что если не накладывать никаких дополнительных условий, то квадратных корней у четвёрки будет два — положительный и отрицательный. И у любого положительного числа их тоже будет два. А вот у отрицательных чисел корней вообще не будет — это видно всё по тому же графику, поскольку парабола нигде не опускается ниже оси y, т.е. не принимает отрицательных значений.

Подобная проблема возникает у всех корней с чётным показателем:

  1. Строго говоря, корней с чётным показателем $n$ у каждого положительного числа будет сразу две штуки;
  2. Из отрицательных чисел корень с чётным $n$ вообще не извлекается.

Именно поэтому в определении корня чётной степени $n$ специально оговаривается, что ответ должен быть неотрицательным числом. Так мы избавляемся от неоднозначности.

Зато для нечётных $n$ такой проблемы нет. Чтобы убедиться в этом, давайте взглянем на график функции $y={{x}^{3}}$:

Кубическая парабола принимает любые значения, поэтому кубический корень извлекается из любого числа

Из этого графика можно сделать два вывода:

  1. Ветви кубической параболы, в отличие от обычной, уходят на бесконечность в обе стороны — и вверх, и вниз. Поэтому на какой бы высоте мы ни проводили горизонтальную прямую, эта прямая обязательно пересечётся с нашим графиком. Следовательно, кубический корень можно извлечь всегда, абсолютно из любого числа;
  2. Кроме того, такое пересечение всегда будет единственным, поэтому не нужно думать, какое число считать «правильным» корнем, а на какое — забить. Именно поэтому определение корней для нечётной степени проще, чем для чётной (отсутствует требование неотрицательности).

Жаль, что эти простые вещи не объясняют в большинстве учебников. Вместо этого нам начинают парить мозг всякими арифметическими корнями и их свойствами.

Да, я не спорю: что такое арифметический корень — тоже надо знать. И я подробно расскажу об этом в отдельном уроке. Сегодня мы тоже поговорим о нём, поскольку без него все размышления о корнях $n$-й кратности были бы неполными.

Но сначала надо чётко усвоить то определение, которое я дал выше. Иначе из-за обилия терминов в голове начнётся такая каша, что в итоге вообще ничего не поймёте.

А всего-то и нужно понять разницу между чётными и нечётными показателями. Поэтому ещё раз соберём всё, что действительно нужно знать о корнях:

Разве это сложно? Нет, не сложно. Понятно? Да вообще очевидно! Поэтому сейчас мы немного потренируемся с вычислениями.

Квадрат (алгебра) — Википедия

Материал из Википедии — свободной энциклопедии

Квадра́т

Вычисление x2{\displaystyle x^{2}} — математическая операция, называемая возведе́нием в квадра́т. Эта операция представляет собой частный случай возведения в степень, а именно — возведение числа x{\displaystyle x} в степень 2.

Далее приведено начало числовой последовательности для квадратов целых неотрицательных чисел (последовательность A000290 в OEIS):

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, …

Исторически натуральные числа из этой последовательности называли «квадратными».

Квадрат натурального числа n{\displaystyle n} можно представить в виде суммы первых n{\displaystyle n} нечетных чисел:

1: 1=1{\displaystyle 1=1}
2: 4=1+3{\displaystyle 4=1+3}
7: 49=1+3+5+7+9+11+13{\displaystyle 49=1+3+5+7+9+11+13}

Ещё один способ представления квадрата натурального числа:n2=1+1+2+2+…+(n−1)+(n−1)+n{\displaystyle n^{2}=1+1+2+2+\ldots +(n-1)+(n-1)+n}Пример:

1: 1=1{\displaystyle 1=1}
2: 4=1+1+2{\displaystyle 4=1+1+2}
4: 16=1+1+2+2+3+3+4{\displaystyle 16=1+1+2+2+3+3+4}

Сумма квадратов первых n{\displaystyle n} натуральных чисел вычисляется по формуле:∑k=1nk2=12+22+32+…+n2=n(n+1)(2n+1)6{\displaystyle \sum _{k=1}^{n}k^{2}=1^{2}+2^{2}+3^{2}+\ldots +n^{2}={\frac {n(n+1)(2n+1)}{6}}}

Вывод

Способ 1, метод приведения:

Рассмотрим сумму кубов натуральных чисел от 1 до n+1{\displaystyle n+1}:
∑k=1nk3+(n+1)3=∑k=0n(k+1)3=∑k=0n(k3+3k2+3k+1)=∑k=0nk3+∑k=0n3k2+∑k=0n3k+∑k=0n1=∑k=0nk3+3∑k=0nk2+3∑k=0nk+∑k=0n1{\displaystyle \sum _{k=1}^{n}k^{3}+(n+1)^{3}=\sum _{k=0}^{n}(k+1)^{3}=\sum _{k=0}^{n}(k^{3}+3k^{2}+3k+1)=\sum _{k=0}^{n}k^{3}+\sum _{k=0}^{n}3k^{2}+\sum _{k=0}^{n}3k+\sum _{k=0}^{n}1=\sum _{k=0}^{n}k^{3}+3\sum _{k=0}^{n}k^{2}+3\sum _{k=0}^{n}k+\sum _{k=0}^{n}1}
Получим:
(n+1)3=3∑k=0nk2+3∑k=0nk+∑k=0n1=3∑k=0nk2+3(n+1)n2+(n+1){\displaystyle (n+1)^{3}=3\sum _{k=0}^{n}k^{2}+3\sum _{k=0}^{n}k+\sum _{k=0}^{n}1=3\sum _{k=0}^{n}k^{2}+3{\frac {(n+1)n}{2}}+(n+1)}
Умножим на 2 и перегруппируем:
6∑k=0nk2=2(n+1)3−3(n+1)n−2(n+1)=(n+1)(2(n+1)2−3n−2)=(n+1)(2n2+n)=n(n+1)(2n+1){\displaystyle 6\sum _{k=0}^{n}k^{2}=2(n+1)^{3}-3(n+1)n-2(n+1)=(n+1)(2(n+1)^{2}-3n-2)=(n+1)(2n^{2}+n)=n(n+1)(2n+1)}
∑k=0nk2=n(n+1)(2n+1)6{\displaystyle \sum _{k=0}^{n}k^{2}={\frac {n(n+1)(2n+1)}{6}}}       (В рассуждениях использована формула: ∑k=0nk=(n+1)n2{\displaystyle \sum _{k=0}^{n}k={\frac {(n+1)n}{2}}}, вывод которой аналогичен приведенному)

Способ 2, метод неизвестных коэффициентов:

Заметим, что сумма функций степени N{\displaystyle N} может быть выражена как функция N+1{\displaystyle N+1} степени. Исходя из этого факта предположим:
∑k=0nk2=f(n)=An3+Bn2+Cn+D{\displaystyle \sum _{k=0}^{n}k^{2}=f(n)=An^{3}+Bn^{2}+Cn+D}
f(0)=0;f(1)=1;f(2)=5;f(3)=14{\displaystyle f(0)=0;f(1)=1;f(2)=5;f(3)=14}
Получим систему линейных уравнений относительно искомых коэффициентов:
{0A+0B+0C+D=0A+B+C+D=18A+4B+2C+D=527A+9B+3C+D=14{\displaystyle {\begin{cases}0A+0B+0C+D=0\\A+B+C+D=1\\8A+4B+2C+D=5\\27A+9B+3C+D=14\\\end{cases}}}
Решив её, получим A=13,B=12,C=16,D=0{\displaystyle A={\frac {1}{3}},B={\frac {1}{2}},C={\frac {1}{6}},D=0}
Таким образом:
∑k=0nk2=f(n)=13n3+12n2+16n+0=n(n+1)(2n+1)6{\displaystyle \sum _{k=0}^{n}k^{2}=f(n)={\frac {1}{3}}n^{3}+{\frac {1}{2}}n^{2}+{\frac {1}{6}}n+0={\frac {n(n+1)(2n+1)}{6}}}

Квадрат комплексного числа в алгебраической форме можно вычислить по формуле:

(a+bi)2=(a2−b2)+2abi.{\displaystyle \left(a+bi\right)^{2}=\left(a^{2}-b^{2}\right)+2abi.}

Аналогичная формула для комплексного числа в тригонометрической форме:

(r(cos⁡ϕ+isin⁡ϕ))2=r2(cos⁡2ϕ+isin⁡2ϕ).{\displaystyle \left(r\left(\cos \phi +i\sin \phi \right)\right)^{2}=r^{2}\left(\cos {2\phi }+i\sin {2\phi }\right).}

Квадрат числа равен площади квадрата со стороной, равной этому числу.

Грэхем Р., Кнут Д., Паташник О. — Конкретная математика. Основание информатики. Пер. с англ. —М.: Мир, 1998. —703 с.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий